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A method for recognizing a target in a sonar image, the
method comprising: normalizing a sonar image; using/defin-
ing multiple test objects; rotating each test object between
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each position as a template, so that multiple templates are
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a different rotational position; applying the multiple tem-
plates for the multiple test objects to the normalized image;
and creating at least one feature vector for the image for use in
target recognition.
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SONAR IMAGING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to and the benefit of United
Kingdom Application No. 1216659.1, filed Sep. 18, 2012, the
entire disclosure and contents of which is hereby incorpo-
rated by reference herein.

BACKGROUND

1. Technical Field

The present invention relates to sonar imaging, and in
particular sidescan sonar and forward looking sonar imaging.

2. Related Art

Sidescan Sonar (SSS) is used for surveying large areas of
the sea floor for sea bottom targets. Side-scan sonar uses a
device that emits sonar pulses down toward the seafloor
across a narrow angle perpendicular to the path of the sensor
through the water. Reflections from the seafloor are recorded
in across-track slices. When stitched together along the direc-
tion of motion, these slices form an amplitude image of the
seafloor within the beam coverage.

Forward Looking Sonar (FLS) is used to provide a real
time view of the seafloor in front of the vehicle. The sonar
pulse is emitted in a narrow beam that is scanned across a field
of view about the direction of travel to form radial slices of the
sea floor. When stitched together, perpendicular to the direc-
tion of motion, these slices form an amplitude image of the
sea floor.

SSS and FLS images are often searched visually by an
operator to identify objects on the seafloor. This is time con-
suming and subject to human error. Automatic Target Recog-
nition (ATR) algorithms can assist operators to identify sea
bottom targets. Properly applied, this reduces the time taken
to analyse a large survey and increases confidence in the
results.

Whilst ATR algorithms help detect targets, the perfor-
mance of current generation ATR algorithms is often specific
to sensor payload and operational conditions. Particularly
with supervised filter response algorithms, a small change to
the speed of the vehicle or the Time Variable Gain (TVG) can
cause a large drop in the probability of detection.

BRIEF SUMMARY

According to the present invention there is provided a
method for use in automatic target recognition in sonar imag-
ing, the method comprising: normalising a sonar image; using
multiple test objects; rotating each test object between mul-
tiple positions; using a projection of each test object in each
position as a template, so that multiple templates are provided
for each test object, each template corresponding to a differ-
ent rotational position; and applying the multiple templates
for the multiple test object to the normalised image to mea-
sure first and second order statistics over the template; choos-
ing the template position where the statistics are most object-
like; and detecting an object from the measured statistics
using a supervised machine learning algorithm.

Each template comprises at least a highlight region or a
shadow region. The templates are adapted locally to the spe-
cific range and resolution of the object.

A plurality of classes of template is defined for each tem-
plate. The plurality of classes of template may comprise a
bounded front template, in which a region is added before the
highlight region in an across-track direction, for example a
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region the same size as the highlight region is added before
the highlight region in an across-track direction. The plurality
of classes of template may comprise a bounded side template,
in which each side of the combined highlight and shadow
region is bounded.

Applying the multiple templates for the multiple test
objects to the normalised image to detect an object in the
normalised image may involve convolving the multiple tem-
plates with the normalised image.

Normalising features in the sonar image may involve nor-
malising the whole image and then applying the multiple
templates or normalising one pixel of the image based on
local image statistics and then applying the multiple tem-
plates for that pixel.

The method may involve using the normalised image to
define a plurality of skewed integral images, each for a dif-
ferent skew angle, and applying the multiple templates for the
multiple test objects to the skewed integral images. By using
integer skewed integral images, the computational require-
ments are reduced. The skewed integral images may be
skewed at angles that correspond to the different rotational
positions of the templates.

The method may further involve determining at least one
feature value for each template, the feature value for each
template being included in the feature vector. When a plural-
ity of classes of template is provided the method may further
involve determining a feature value for each template class
and adding the feature value for each template class to the
feature vector.

The method may further involve using the feature vector
for target recognition. The feature vector may be used in a
target recognition classifier. The target recognition classifier
is supervised machine learning algorithm.

According to another aspect of the invention, there is pro-
vided a computer implemented target detection system
adapted to perform the method of the invention.

The above-mentioned characteristics, in addition to the
other aspects of the present invention, will be better under-
stood by reference to the detailed description of the figures
hereinafter.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

Various embodiment of the present invention will now be
described in greater detail with reference to an example of
embodiment represented in the drawings, of which:

FIG. 1(a) is a schematic diagram of a side scan sonar
system,

FIG. 1(b) is a schematic diagram of a forward-looking side
scan sonar system;

FIG. 2 is a schematic diagram showing various stages in a
target detection process in a sonar image;

FIG. 3 illustrates how the sum of the pixels of a region can
be reduced to a function of four points in an integer skewed
integral image representation;

FIG. 4 models the size of highlight and shadow regions for
a cube like object;

FIG. 5 is an example of an extended feature set;

FIG. 6 is a block diagram of a cascade of boosted weak
classifiers;

FIG. 7 shows examples of augmented reality targets (top:
cylinder; middle: complex; bottom: truncated cone);

FIG. 8 is a plot of false alarms against probability of detec-
tion for a classifier trained and tested on Edgetech data;
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FIG. 9 is a plot of false alarms against probability of detec-
tion for a cylindrical classifier trained entirely on Edgetech
data and tested on MarineSonics & Edgetech data, and

FIG. 10 is a plot of false alarms against probability of
detection for a classifier trained and tested on MarineSonics
and Edgetech data.

DETAILED DESCRIPTION OF VARIOUS
EMBODIMENTS

The present invention is applicable to sonar imaging. Sonar
imaging uses sensors which have imaging geometries where:
the emitter can be approximated as a point source; the emitter
illuminates or insonifies the object at a known grazing angle;
the object is located on a planar surface; and the angle from
the imaging sensor to the planar surface is known. Examples
of sensors displaying this geometry are sidescan sonar and
forward looking sonar.

FIG. 1(a) shows a sidescan sonar sensor system. In this,
sensors are mounted on the side of an underwater vehicle.
They comprise an array of transducers mounted parallel to the
direction of motion. Sidescan sonar sensors generate a fan
shaped acoustic beam perpendicular to the direction of
motion and the sea-floor. The intensity of the acoustic return
from the sea floor, objects, and other scatters are integrated by
their time of flight to determine the intensity of a pixel. The
pixels ordered by time of flight form an intensity image per-
pendicular to the direction of motion. When stitched together
along the direction of motion, these slices form an image of
the seafloor within the beam coverage.

FIG. 1(b) shows a forward look sonar system. In this,
sensors are mounted on the front of a vehicle. They emit a fan
shaped beam perpendicular to the sea-floor. The beam can be
scanned mechanically or electronically across a range of
angles in front of the vehicle. When stitched together these
slices form an image of the seafloor, in front of the vehicle,
within the beam coverage.

For both side scan and forward looking sonar, associated
with the sensors is a detector, and a computer processor that
has access to computer software and/or hardware that is con-
figured to analyse the reflected signals to create images that
can be used to detect and identify objects. Techniques for
capturing reflected signals and generating side scan sonar or
forward look sonar images are well known in the art and so
will not be described in detail.

FIG. 2 shows a flow diagram of the feature extraction stage
of a sonar object detection process. The method generally
involves normalising the image (either locally or across the
whole image); calculating the square of the intensity of each
pixel in the normalised image; and defining helper images to
accelerate calculation of mean and variance of skewed rect-
angular regions in the image. Once the normalised image is
prepared, multiple templates are formed using a plurality of
known objects, typically boxes or cuboids. Highlight and
shadow regions from each object are approximated as skewed
rectangles, and used to define a template. Additional skewed
rectangles are defined to form boundaries round the highlight
shadow regions. These are also used to form templates. The
templates are applied to the prepared image and the mean and
variance of the pixels inside the skewed rectangles forming
the templates are calculated. Once all of the templates have
been applied, the template responses most likely to corre-
spond to the orientation of a hypothetical object located at a
pixel are identified and used to form a feature vector. The
feature vector is used identify/recognise objects. The method
will now be described in more detail.
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Images that are captured are firstly normalised. The aim of
image normalisation is to reconstruct the image that would
have been produced independent of factors such as beam
pattern and sonar loss. For object detection, it is sufficient to
normalise the background intensity. Features can be norma-
lised locally, but this prevents the absolute value of the pixels
being used as a feature. Any suitable normalisation technique
can be used, but in a preferred example the method proposed
by Dobeck is used (see G. J. Dobeck. “Image normalization
using the serpentine forward-backward filter: application to
high-resolution sonar imagery and its impact on mine detec-
tion and classification”. in Proc. Spie, vol. 5794, 2005, the
contents of which are incorporated herein by reference). This
method uses adaptive filters, which track paths of similar
intensity through the image. The filters can follow surface
returns and beam patterns effectively removing unwanted
artefacts from the image.

The intensity of each pixel in the normalised image is
squared to produce an image (referred to as the “Squared
Image”). The mean intensity of a region can be calculated
from the normalised image and the standard deviation from
both the normalised and Squared Images. This is a standard
calculation and therefore is not described here. To accelerate
these calculations integer skewed integral images (“helper
images”) are calculated from both the normalised and the
Squared Image. An integer skewed integral image is calcu-
lated from an image i(x; y). Integer skewed integral images
are images in which subsequent rows of the image have been
skewed by an angle arctan(c/f8), where o and [ are integer
constants. The formulation is similar to that of the standard
integral image with the addition of a skew function s(y,y') to
calculate the horizontal shift between each row of the image.
The integral image I(x, y) is calculated from the normalised
image i(X; y) as

1
i, ) M

2

Y=y
x" =max(0x—s(y,y"))

Jxa

A number of skewed integral images can be calculated
corresponding to different skew angles. The regions that can
be calculated from these images are constrained by the skew
angle of the image. The skewed rectangular region, defined in
FIG. 3 can be calculated as

1x, y) =

where

(3115

DY) = 1A+ 1(C) ~ [(B)~ (D) @

where

A <y = C(y)
AX) = s, A <X’ = C) =50, AQ))

Where valid positions for A, B, C and D are:
AW)=B()

C)=D()
A)=DO0-s(D)3),AB)

B)=C)-sB)»),C(») 3
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The skewed integral images are used to approximate the
highlight and shadow geometry produced by a box or cuboid
located onthe sea floor. By varying o and 8, an approximately
uniform distribution of box or cuboid angles relative to the
sonar array can be created. This is demonstrated in Table 1:

Q
-

Angle

-76°
-63°
—-45°
-27°
-14°
0° and 90°
14°
27°
45°
63°
76°

=
[ SR N N S Y S .

B

As noted above, the target detection method of the inven-
tion is template based. It involves selecting multiple test
objects, for example a box or cuboid; rotating each test object
between multiple positions; using a two dimensional projec-
tion of each test object in each position as a template, so that
multiple templates are provided for each test object, each
template corresponding to a different rotational position.
Once this is done, the mean and variance of the regions
defined by the templates are calculated from the normalised
images or alternatively via the integer skewed integral
images. Only the mean and variance corresponding to the
template most like that of an object are retained and used to
detect an object.

FIG. 2 shows steps for identifying suitable features for
object recognition. To train the detector each possible feature
is calculated for every pixel in the image. After the detector is
trained only the most useful features are calculated. A feature
vector is formed from the response of the features. In the
example shown in FIG. 2, calculation of the feature vector for
a single pixel is shown.

Firstly, a set of boxes or cuboids is defined with across-
track dimension x, along-track dimension y and height z,
where each box or cuboid in the set has different dimensions.
For example, the set of boxes or cuboids may have dimen-
sions from 0.1 m-0.1 m-0.1 m to 3 m-3 m-3 m, where each
additional box varies only in one dimension in increments of
0.1 m. In this example set, there are 27,000 unique boxes. For
each box or cuboid, a set of features is selected.

The set of features is defined using a two dimensional
projection of each box or cuboid as a template to identify
objects in the normalised image. The projection is calculated
for each pixel given the grazing angle ¢ and the local image
resolution, the box or cuboid being centred on the pixel. The
sonar image formation is approximated using ray tracing as
shown in FIG. 4. This shows a model for the size of the
highlight and shadow regions for a cube like object. The
object has height z and width x and the highlight and shadow
length are calculated for an image that has not been corrected
for slant angle. The size of the highlight region in the across-
track direction h, is related to the grazing angle ¢ as h,=x/cos
(¢). The shadow length s, is s,=7/sin(¢).

Using the two dimensional projection, three classes of
templates are defined corresponding to each box or cuboid.
FIG. 5 shows the three template classes. These are (i) a stan-
dard object template that has a single highlight and shadow
region—in this case the template response is the mean of the
sum of the intensity of the pixels in both the highlight and
shadow regions; (i1) a bounded front template, in which a 2D
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region the same size as the highlight region is defined before
the highlight in the across-track direction—in this case the
template response is the mean of the sum of the intensity of
the pixels in this region subtracted from the mean of the sum
of the pixels in the standard template response; and (iii) a
bounded side template, in which a box or cuboid with half'the
width of the box or cuboid defining the standard template is
defined each side of the standard template—in this case the
template response is the mean of the sum of the intensity of
the pixels in each side region, these template responses being
subtracted from the standard template response to define the
bounded side template response. For each template class,
eleven templates are defined corresponding to discrete rota-
tions of the box or cuboid. The rotations are chosen to match
the skew rotations for the skewed integral images.

The standard object templates do not bound the region, and
so the standard object template obtains a similar response on
larger target-like regions such as ripples or clutter. The
bounded front template and bounded side template can reject
such regions as the first order feature response will tend
towards zero. This enables false alarms due to the background
to be minimised.

The orientation of the target is not known before image
processing begins. For each 3D box or cuboid, the template
response of the image to eleven different templates (where in
the example above, each template includes three template
classes each defined by a separate template, i.c. the standard
template, the bounded front template and the bounded side
template) is calculated. Each template corresponds to a dis-
crete rotation of the object. Each template of each template
class for each box or cuboid is centred on each pixel of the
image and convolved (or otherwise) to determine the tem-
plate response. The template response is a single numerical
value produced by convolving the template with a particular
location in the image or by extracting the value from the
integer skewed integral images; these processes are math-
ematically equivalent. Once this is done, features are selected
for that box or cuboid to represent information about the
image.

In the example shown in FIG. 2, the template response is
calculated by (i) calculating the sum of the intensity of the
image pixels within the regions of the template (i.e. the high-
light, shadow and bounding regions as appropriate) using the
helper images to accelerate the calculation; (ii) calculating
the sum of the intensity of the square of the image pixels
within the template regions using the helper images to accel-
erate the calculation; (iii) calculating a first order response by
calculating the difference of the mean of the sum of the image
pixels within the template regions, i.e. the highlight and
shadow regions for the standard template; (iv) calculating a
second order response from the variance of the intensity of the
pixels in the template regions using the sum of the image
pixels within the template regions from the normalised image
and the squared image; and (v) combining the first and/or
second order responses to produce a single feature value for
that template.

The feature value selected for inclusion in the feature vec-
tor may be the maximum of'the eleven template responses for
each template class (i.e. the feature which has the best overlap
with the target). Additional statistical features may be calcu-
lated, such as the standard deviation of the pixels within the
highlight and shadow regions of the standard template.
Hence, each box is represented by four features, one corre-
sponding to each template class and one calculated from the
standard deviation of the pixels within the highlight and
shadow regions. For each pixel in the image, a single feature
vector is defined using these features. For the plurality of
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boxes mentioned above, there are 27,000 unique boxes each
with four features per box thereby resulting in a feature vector
that has 108,000 unique features per pixel. The feature vector
is used to identify/recognise objects.

The feature set described above is large and it would be
impractical to calculate all features for every pixel. Therefore,
boosted decision trees are used for feature selection com-
bined with a cascade structure. A cascade is a sequence of
strong classifiers where each classifier in the sequence is
trained and evaluated on the regions that are evaluated as
target like by the previous classifier. A boosted decision tree
classifier is formed from multiple weak classifiers. Weak
classifiers are those for which the output is only weakly
correlated to the true class (i.e. the classifier is slightly better
than a random guess). Strong classifiers can be arbitrarily
well correlated to the true class. A strong classifier can be
created from a set of weak classifiers through boosting. The
weighting of the training samples is altered such that samples
classified correctly receive a lower weighting when evaluat-
ing the error for the next weak classifier. The strong classifier
is created by summing the output of the weak classifiers
multiplied by a weighting coefficient c,. This weights the
classifiers according to their error over the training set. Using
stump decision trees consisting of a single node, each weak
classifier is essentially a cut over a single feature. Thus, the
boosting algorithm selects the most informative features as a
consequence of building the strong classifier. By tuning each
strong classifier such that it retains greater than 98% of the
positive samples and rejects 50% of the background samples
a large proportion of the image can be discarded with rela-
tively few calculations. This process is illustrated in FIG. 6.

Each pixel in the image is evaluated by the classifier. To do
this, the feature vector for each pixel is entered into the
classifier. The false alarm rate is minimised by grouping
neighbouring positive pixels and applying a threshold on the
number of pixels in the group. This process will be referred to
as thresholding by the number of nearest neighbours.

The system 1is trained by providing it with examples of
images which contain targets (Signal) and examples of
images which do not contain targets (Background). Typically
around one thousand or so target images (positive training
set) are used in the training and around two thousand or so
background images (negative training set). A single feature
vector is calculated, as described above, for each training
target example marked positive and for a random sample of
the two thousand negative training sets respectively. The aim
of'the training process is to find the most informative features
and to place bounds on those features which separate the
positive and negative training samples.

The training consists of multiple stages; each stage elimi-
nates more than 50% ofthe negative samples and retains more
than 98% of the positive samples. As the same number of
negative samples is required at each stage, of which 50% will
have been eliminated by the previous stage the negative
samples must be recalculated, from the remaining negative
images, at each stage. A classifier is produced from the com-
bination of all the stages. As the system is trained, it selects
background samples, which it currently classifies incorrectly
and uses these to improve the classification. The trained sys-
tem is static and does not adapt/update itself during classifi-
cation. The system can be retrained when new data is avail-
able by repeating the training stage with the additional data.

To test the method of the invention, images from two data
sets have been tested. The data sets consist of 2,000 Edgetech
and MarineSonics images randomly sampled from various
tow-fish and Autonomous Underwater Vehicle (AUV) mis-
sions. These images include flat, rippled and cluttered regions
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of'sea-floor. The images are randomly split into a training set
and a testing set, and augmented reality objects are then
inserted into the images [see P. Y. Mignotte, J. Vazquez, J.
Wood, and S. Reed. “PATT: A Performance Analysis and
Training Tool for the Assessment and Adaptive Planning of
Mine Counter Measure (MCM) Operations”, 2009, the con-
tents of which are incorporated herein by reference]. The
target set consists of a long narrow cylinder, a complex asym-
metric object made up of several small spheres and a sym-
metric truncated cone (FIG. 7). The algorithm is trained on a
data set consisting of positive target regions and background
images which may contain other target types. The algorithm
is trained and tested on the targets shown in FIG. 6. The
performance characteristics for the three targets are shown for
the Edgetech data set in FIG. 7.

From FIG. 7, it can be seen that the truncated cone and the
complex classifier both achieve a probability of detection
better than 95% for less than 20 false alarms per square
kilometer. The cylinder classifier achieves a lower maximum
probability of detection and an order of magnitude more false
alarms. The probability of detection can be attributed to the
low along-track resolution of the Edgetech sonar and the
asymmetry of the cylinder target. Cylinders with their major
axis oriented in the across-track direction have an along-track
signature which is only 1 pixel wide (FIG. 6 top left). The low
number of pixels increases the probability that random noise
and clutter will have a target like signature. The large number
of'false alarms can be attributed to several rippled areas which
are visually identical to the end on aspect of the cylinder. In
cluttered and rippled regions which are not identical to the
targets the false alarm rate is similar to that of the other two
targets.

The results for the selectivity of the classifiers are shown in
Table 2:

Object Type
Truncated
Classifier Cone Cylinder Complex
Truncatad 95% 8% 4%
Cone
Cylinder 1% 91% 0%
Complex 1% 3% 98%

The classifier specified in the row heading is applied to the
target type specified in the column heading. The cell contains
the percentage of targets classified by the classifier. The prob-
ability of detection is taken for the classified output where
there are 3 nearest neighbours. These results show that the 3D
features algorithm performs well on all of the target types.

The cylindrical target is the most challenging target for the
algorithm and produces a classifier with the largest number of
features. Therefore, this target was used to test multi-sonar
classification. Many filter response algorithms would be sen-
sor specific. However, as simple features are used, which
adapt according to the image formation model the algorithm
can be applied generically between sonar types. Applying the
algorithm without modification produces poor results due to
the algorithm over-specialising on the statistical information
specific to each sonar. Applying a median filter to the images
removes much of this variation. FIG. 9 shows that the cylinder
classifier trained on Edgetech data also performs well on the
MarineSonics data.

While reducing statistical variation between images can
produce a more generic classifier, this information is retained
to obtain a high probability of detection. Therefore, where
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training data is available for all the desired sonar types the
algorithm can be trained on a combined data set. FIG. 10
shows the performance characteristics for a cylinder classifier
trained on both Edgetech and MarineSonics data. The perfor-
mance is better than that for the classifier trained without the
statistical data. However, a probability of detection of more
than 80% is still achieved even on unseen sonar data.

The present invention provides a simple and effective tem-
plate based technique for automatic target recognition in
sonar images. In contrast to known template based
approaches, in accordance with the invention, templates are
not defined a priori. Instead, the most salient templates or
features are selected during training using multiple different
object shapes. Using these multiple different object shapes,
targets can be more easily discriminated from background in
cluttered regions.

Using locally adaptive features reduces the dependence of
the classifier on specific operational conditions or make of
sonar. Consequently, the algorithm can be trained on one type
of'sonar and applied to another with reasonable results. Train-
ing the algorithm on multiple sonar types, results in a single
classifier with excellent performance for each sonar type.

The present invention provides a generic object detection
technique for side scan sonar that has similar performance to
state of the art detection and identification algorithms, whilst
providing a performance that can be retained across different
operational conditions using different sensor payloads. This
allows target detection operations to be conducted with new
vehicles and sensors without the initial cost and development
time of building a target database and training an ATR algo-
rithm. A sensor independent feature space allows vehicles
with different sensor payloads to communicate information
about their environment.

The invention may be embodied as a method, system,
computer program product, or a combination of these. The
invention may be implemented entirely in software or using
software and hardware aspects. The invention may take the
form of a computer program product on a computer-readable
medium having computer-usable program code embodied in
the medium.

A skilled person will appreciate that variations of the dis-
closed arrangements are possible without departing from the
scope of the invention. Accordingly the above description of
the specific embodiment is made by way of example only and
not for the purposes of limitations. It will be clear to the
skilled person that minor modifications may be made without
significant changes to the operation described.

That which is claimed:
1. A method for recognising a target in a sonar image, the
method comprising the steps of:

normalising a sonar image;

at least one of'using or defining multiple three-dimensional
test objects;

rotating each three-dimensional test object between mul-
tiple positions;

using a two-dimensional projection of each three-dimen-
sional test object in each position as a template, so that
multiple templates are provided for each test object,
each template corresponding to a different rotational
position;

applying the multiple templates for the multiple test
objects to the normalised image to determine a response
for each template; and

using the response determined for each template to create
at least one feature vector representative of the image for
use in target recognition,
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wherein:

each template is at least one of the following three
classes of templates: a standard object template, a
bounded front template, or a bounded side template;

the template response for each standard object template
present is calculated as a mean of a sum of an intensity
of' the pixels in both highlight and shadow regions of
the standard object template;

the template response for each bounded front template
present is calculated as a mean of a sum of an intensity
of the pixels in a two-dimensional region the same
size as the highlight region of the standard object
template subtracted from a mean of a sum of the pixels
in the standard template response; and

the template response for each bounded side template
present is calculated as a mean of a sum of an intensity
of the pixels in each side region subtracted from the
standard template response.

2. A method as claimed in claim 1 wherein each template
comprises at least a highlight region and a shadow region.

3. A method as claimed in claim 2, wherein a plurality of
classes of templates are defined for each template.

4. A method as claimed in claim 3, wherein the plurality of
classes of templates comprise the standard template having
only the highlight and the shadow region.

5. A method as claimed in claim 3, wherein the plurality of
classes of templates comprise a bounded front template, in
which the two-dimensional region the same size as the high-
light region is added before the highlight region in an across-
track direction.

6. A method as claimed in claim 3, wherein the plurality of
classes of templates comprise a bounded side template, in
which each side of the combined highlight and shadow region
is bounded.

7. A method as claimed in claim 1, wherein applying the
multiple templates for the multiple test objects to the norma-
lised image to detect an object in the normalised image
involves convolving the multiple templates with the norma-
lised image.

8. A method as claimed in claim 1, further comprising the
steps of:

using the normalised image to define a plurality of skewed

integral images, each for a different skew angle; and
applying the multiple templates for the multiple test
objects to the skewed integral images.

9. A method as claimed in claim 8, wherein the skewed
integral images are skewed at angles that correspond to the
different rotational positions of the templates.

10. A method as claimed in claim 1, wherein the step of
normalising features in the sonar image involves normalising
the whole image and then applying the multiple templates or
normalising one pixel of the image based on local image
statistics and then applying the multiple templates for that
pixel.

11. A method as claimed in claim 1, further comprising the
step of determining at least one feature value for each tem-
plate, the feature value for each template being included in the
feature vector.

12. A method as claimed in claim 11, wherein when a
plurality of classes of templates are provided and the method
further involves determining a feature value for each template
class and adding the feature value for each template class to
the feature vector.

13. A method as claimed in claim 12, further comprising
the step of using the feature vector for target recognition.

14. A method as claimed in claim 12, further comprising
the step of using the feature vector in a target recognition
classifier.
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15. A method as claimed in claim 14 wherein the target
recognition classifier comprises a supervised machine learn-
ing algorithm.

16. A method as claimed in claim 1, further comprising the
step of capturing the sonar image.

17. The method as claimed in claim 1 wherein the response
for each template is determined by calculating a mean and a
variance of pixels inside skewed rectangular regions in each
template.

18. A computer implemented target detection system, said
system comprising one or more memory storage areas and
one or more computer processors configured to perform the
method of claim 1.

19. A computer program product comprising at least one
non-transitory computer-readable medium having computer-
usable program code embodied therein, the computer-usable
program code being configured for performing the method of
claim 1.
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